

REDD-Alert Dynamic GTAP simulations 28-9-2011 WP leaders meeting,

Onno Kuik

A dynamic general equilibrium analysis

What Can You Do with GDyn?

The GDyn Model can be used to determine how changes in policy, technology, population and factor endowments can affect the path of economies over time.

- Equilibrium forces:
 - Supply meets demand
 - Savings meet investments
 - No excess profits
- Endogenous supply of land (= endogenous rate of deforestation)
- Calibration period: 2001-10
- Simulation period: 2010-30

Regions/ commodities

Regions	Commodities		
Indonesia	Crops		
Vietnam	Livestock		
Peru	Forestry		
Tropical Africa	Mining		
Other tropical timber producing countries	Processed food and fibre (incl. fish)		
(ITTO)			
China	Wood products and paper		
Industrialized countries (INC)	Manufactures		
Rest of World (ROW)	Services		

Land use, land use change and deforestation

Land use, land use change and deforestation

Land use, land use change and deforestation

Baseline deforestation and potential degradation 2010-30

Baseline deforestation 2010-30: effect of biofuel policies

Possible impact of REDD on deforestation

Period	% reduction of baseline deforestation
2010-2015	0
2015-2020	25
2020-2030	50

Deforestation 2010-30 (mln ha)

Change in world market prices with respect to baseline (%)

Impacts of REDD scenario on GDP

 Industrialized countries benefit economically from REDD policies through (agricultural) terms of trade

Displacement (% of avoided deforestation)

If region x (row) would unilaterally implement REDD, how would deforestation be affected in region y (column) (as % of avoided deforestation in region x) ?

	Indonesia	Peru	Africa	ΙΤΤΟ	ROW	Total
Indonesia		0.02	0.58	2.28	0.62	3.18
Peru	0.04		0.18	0.84	0.24	1.31
Africa	0.02	0.00		0.27	0.08	0.37
ΙΤΤΟ	0.10	0.02	0.36		0.44	0.91

Displacement effect is very small – from 0.4 to 3.2% !

Conclusions

- REDD may increase food and timber prices, amplifying the driving forces of deforestation
- The relative price increase is limited however. Industrialized countries, being net agricultural exporters, benefit from these price increases and can pay more for REDD
- Demand for first generation biofuels increases deforestation (3%~14%)
- Displacement/leakage seems quite limited (contrary to studies that consider forestry as the primary cause of deforestation).

